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Abstract

A probabilistic method is proposed and implemented to solve linear elasticity problems. The method, called walk
on the boundary method (WBM), uses the same governing equations as the boundary element method. Unlike in
®nite element and boundary element methods, WBM does not require any meshing. Also, error estimates for WBM

are easier to obtain than in ®nite element and boundary element methods. Furthermore, WBM obtains a point
solution at a speci®c point of interest instead of a full ®eld solution as in ®nite element and boundary element
methods. WBM is developed for general traction boundary value problems in antiplane shear, plane strain, and 3D
elasticity. Numerical implementations are performed for three example problems: (1) antiplane shear problem with a

centrally located circular hole being loaded by uniformly applied traction, (2) plane strain problem with centrally
located circular hole being loaded by uniform tension, and (3) 3D elasticity problem with a centrally located
spherical cavity being loaded by uniform tension. Results from the three example problems compared favorably

with results from the analytical and ®nite element solution. Three critical issues associated with the WBM for linear
elasticity are pointed out for its further improvement. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The two most popular schemes to solve elasticity problems in solids are the ®nite element method and

the boundary element method. The ®nite element method (FEM) has the advantage that it is very

versatile but requires meshing the whole domain of interest. This limits the degree of geometrical

complexities that it can practically simulate. The boundary element method (BEM) is better than the

®nite element method (FEM) for elasticity problems in the sense that it only needs the boundaries of the
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domain of interest to be meshed. This allows BEM to be more versatile than FEM in modeling
problems with geometrical complexities.

Often in engineering applications, we are only interested in the state of deformation at speci®c points
in the body. However, in order to obtain this solution via FEM, a full ®eld analysis must be carried out
even though only a very small portion of the solution is actually needed. In BEM the solution of
displacement and traction ®elds on the boundary of the domain is required before stress at the point of
interest can be computed. Thus, in both FEM and BEM, greater part of the computation is usually
involves in solving for displacement and stress ®elds away from the point of interest. In this paper, we
will present a numerical scheme that requires neither meshing nor computing all of the ®eld quantities.

The numerical method presented here is based on simulating a random walk on the boundary of the
domain of interest, hence the name `walk on the boundary method' (WBM). The method is used mostly
by physicists and nuclear engineers to solve heat transfer and neutron transport problems (Sabelfeld,
1991; Nakamura, 1977; Ho�man and Banks, 1976; Zagajac, 1996). In order to apply the WBM, the
physical problem is formulated using the integral equation approach. For elasticity problems, the
formulation completely resembles that of the BEM. Numerically, there is one major di�erence; unlike
BEM, WBM does not require the discretization of the boundary in order to obtain solutions. Moreover,
the ®eld quantity of interest (displacement or stress) in WBM can be obtained at exactly the point of
interest by sampling displacement and/or traction values on the boundary through simulated random
walks on the boundary. Because WBM does not require meshing and can obtain solutions at a speci®c
point, it can be a very e�cient numerical scheme when complex geometries, e.g., oddly shaped bodies
containing many holes, are involved. Another advantage of the WBM is that error estimates are much
easier to obtain than in FEM and BEM.

WBM is a probabilistic method for solving deterministic problems based on global integral equations.
The integral equations are called global because they are applied to the entire domain of interest.
Another probabilistic method for solving deterministic problems based on integral equations is called
the `walk inside the domain algorithm' (Sabelfeld, 1991) or the `¯oating random walk' (Haji-Sheikh and
Sparrow, 1966; Brown, 1956). The method is based on the local integral mean-value relationship. The
¯oating random walk allows large random steps for points far removed from the boundary; however, as
the walker approaches the boundary, smaller steps are needed. Also, for complex geometries,
considerable computer time is required to determine the closest boundary point from the current walker
position in order to construct the circle (Ho�man and Banks, 1976). There are also other probabilistic
methods for solving deterministic problems which are based on partial di�erential equations. A well
known probabilistic method is the solution of the Laplace equation with Dirichlet boundary conditions
by simulating a discrete random walk (Farlow, 1993; Minkowycz et al., 1988). More recently, Grigoriu
has presented a probabilistic method based on Ito's formula (Grigoriu, 1997). This probabilistic method
obtains point solutions to second order parabolic and elliptic partial di�erential equations with Dirichlet
or Neumann boundary conditions by simulating Brownian motion. A major drawback of both of these
methods is that their applicability is limited, so far, only to uncoupled, second order parabolic and
elliptic di�erential equations. Therefore, these methods can solve only a limited class of problems in
elasticity, such as torsion or antiplane shear problems. If we insist on a formulation of elasticity based
on partial di�erential equations, we will need a probabilistic method for solving fourth order elliptic
partial di�erential equations in plane problems (biharmonic equations), or three coupled second order
elliptic equations in 3D (Navier equations). This problem is still unsolved since both the biharmonic and
Navier equations do not lend themselves easily to a probabilistic interpretation. The integral equation
formulation does not have this problem (Sabelfeld, 1991). Integral equations lend themselves easily to
probabilistic interpretation, even for 3D elasticity problems.

In the following sections of the paper, a theoretical background of the WBM is presented. Following
the theory section, we will show how the WBM can be applied to solve elasticity problems formulated
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using global integral equations. Three numerical examples are presented: (1) Antiplane shear problem of
a square containing a centrally located circular hole; (2) Plane strain problem of a square containing a
centrally located circular hole; (3) 3D elasticity problem of a cube containing a centrally located
spherical cavity. These problems are chosen because the numerical results can be compared to the
available analytical results for each of the problems, except for the 3D problem where ®nite element
results are used. In the last section, we will show how error estimates can be obtained.

2. Theoretical background of WBM

The theory of the WBM is summarized in this section. For more details, the reader is referred to
Sabelfeld (1991) and Nakamura (1977). First, we will present the type of equations that the WBM is
designed to solve. Then, we will describe the probabilistic basis of the WBM and discuss its
implementation.

2.1. Fredholm integral equations of the second kind

The equations that the WBM is designed to solve are Fredholm integral equations of the second kind.
The properties of Fredholm integral equations are well known and can be found in many applied
mathematics text books (Hilderbrand, 1965; Kanwal, 1997). In this section, we will focus on the aspects
most relevant to the WBM.

It is well known that the equations of linear elasticity can be written in the following form over a
domain O with boundary G

m� �x 0 � �
�
G
K
ÿ

�x 0, �y
�
m� �y� ds �y � f� �x 0 �, �x 0 2 G �1�

where m is the unknown density function on the boundary, �x 0is a point on the boundary, �y is the dummy
integration variable, K is the kernel, e.g., the Kelvin solution in elasticity and f is a known function on
the boundary. Note that Eq. (1) is a Fredholm integral equation of the second kind (Hilderbrand, 1965;
Kanwal, 1997). Both m and f may be scalar-valued or vector-valued functions; when m and f are scalar-
valued functions,K� �x, �y� is also a scalar-valued function; when m and f are vector-valued functions with
dimension n, the kernel is a n� n matrix and the integration is performed over each element of the
matrix. Speci®c examples of K and m for linear elasticity are given in Section 3 for antiplane shear,
plane strain and 3D elasticity.

In order to simplify subsequent presentation of the paper, we will adopt the following operator
notation

Km �
�
G
K� �x, �y�m� �y� ds �y �2�

where the bold letter K denotes the integral operator. Eq. (1) can now be rewritten as

�IÿK�m � f �3�
where I is the identity operator. The formal solution for m is

m � �IÿK�ÿ1f �4�
The operator �IÿK�ÿ1can be represented by the Neumann series (Hilderbrand, 1965; Kanwal, 1997).
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m �
X1
m�0

Kmf �5�

where

Kmf �
�
G
K m� �x, �y�f� �y� ds �y �6�

and K m� �x, �y� is de®ned by the following recursive relation

K m� �x, �y� �
�
G
K
ÿ

�x, �t
�
K mÿ1ÿ �t, �y

�
ds�t, mr1 �7a�

K 0� �x, �y� � 1 �7b�

The in®nite series solution of m given by Eq. (5) is called the Neumann series (Hilderbrand, 1965;
Kanwal, 1997). The series is absolutely convergent if

sup
�x2G

�
G
jK� �x, �y�j ds �y < 1

The above condition is typically not met by the kernels that appear in linear elasticity. However, it has
been shown that the Neumann series representation still holds for linear elasticity. The proof can be
found in Parton and Perlin (1982) and Pham (1967). If only traction boundary condition is applied on
G, it has been shown in Parton and Perlin (1982) that the original series (Eq. (5)) is convergent. For
other types of boundary conditions, the original series as shown in Eq. (5) needs to be modi®ed for it to
be convergent. The details can be found in chapters 10, 29 and 30 of Parton and Perlin (1982).

The knowledge of m� �x� on G can then be used to obtain the solution of linear elasticity in O: The
solution, denoted by T� �x�, has the form

T� �x� �
�
G
R� �x, �y�m� �y� ds �y �x 2 O, �y 2 G �8�

where R� �x, �y� is usually closely related to K� �x, �y�: Speci®c terms of R� �x, �y� and K� �x, �y� relevant to linear
elasticity problems are given in Section 3. Eq. (8) basically states that the solution at the point of
interest is given by a weighted average of m over the boundary G, where the weighting factor is given by
the kernel R� �x, �y�: Using the integral operator notation de®ned above (Eq. (2)), we can write Eq. (8) as

T � Rm �9�

Substituting Eq. (5) into Eq. (9), we obtain the solution for T� �x� in operator notation as

T � Rf�
X1
m�1

RKmf �10�

which can be written out more explicitly as

T� �x� �
�
G
R� �x, �y�f� �y� ds �y �

X1
m�1

� �
G
R� �x, �y�K m� �y, t�f��t� ds�t ds �y �11�
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In general, it is not possible to evaluate the terms on the right hand side of Eq. (10) or (11) exactly. A
numerical scheme is required.

2.2. Probabilistic basis of WBM and its implementation

We need to evaluate the terms on the right hand side of Eq. (10) or (11) in order to obtain T� �x�:
Walk on the boundary method (WBM) is a numerical scheme that will allow us to compute T� �x� which
is the desired solution. It has been shown by Rubinstein (1981) and Sabelfeld (1991) that the terms on
the right hand side of Eq. (11) are given by the expectations of appropriately de®ned random variables.
The proof of this fact is given in Appendix A. WBM works by estimating the expectation of these
random variables through statistical sampling of boundary points. Speci®cally, the statistical sampling of
points on the boundary is done via a random walk on the boundary, G

To see how WBM works in more detail, let us begin by noting that the position of a random walker,
who starts out at an interior point �x and lands on the boundary �yi �ir0�, is a random variable. This
random walk is speci®ed by the initialization probability density,p� �x, �y0�, and the transition probability
density, p� �yiÿ1, �yi �: The initialization probability density, p� �x, �y0�, is de®ned by noting that p� �x, �y0� ds �y,
is the probability of a random walker ending up in the neighborhood of point �y0 given that it started
out from point �x: Similarly, p� �yiÿ1, �yi � ds �y gives the probability of a random walker moving from point
�yiÿ1 into the neighborhood of point �yi on the ith transition. One realization of the random walk on the
boundary is depicted in Fig. 1 for three transitions after starting out from some arbitrary point �x inside
the body.

As mentioned earlier, the terms on the right hand side of Eq. (11) are given by the expectations of

Fig. 1. A schematic illustration of the nth realization of the Monte Carlo simulation of the WBM. The body consists of the domain

O and the boundary G: The initial direction is chosen according to p� �x, �y0�, initialization probability density, while all subsequent

directions are chosen according to p� �yiÿ1, �yi �, transition probability density. Then, the points encountered by the rays are the

sample points.
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appropriately de®ned random variables. In this paper, we will adapt the de®nition used by Sabelfeld
(1991), Rubinstein (1981), and Fishman (1996) for these random variables�

xi
	
i2I

where I denotes the set of nonnegative integers. Each random variable, xi, is a function of the position
of the random walker and is given by the recursive formulae (Sabelfeld, 1991; Rubinstein, 1981;
Fishman, 1996)

xi � Qif� �yi �, ir0 �12�
where

Qi � Qiÿ1K� �yiÿ1, �yi �
p� �yiÿ1, �yi �

�13a�

Q0 � R
ÿ

�x, �y0
�

p
ÿ

�x, �y0
� �13b�

and f is the known function on the boundary de®ned by Eq. (4). It will be shown in Appendix A that
the expectation of the random variable, E�xi �, ir1, is exactly equal to

E
ÿ
xi
�
� RKif �14a�

and for i � 0

E
ÿ
x0
�
� Rf �14b�

Eqs. (14a) and (14b) are exactly the terms on the right hand side of Eq. (10), which, when added
together, will give T� �x�: Note that T� �x� is given by an in®nite series as shown in Eq. (11). In numerical
implementations, only a ®nite number of terms is summed. A way of deciding how many terms are
needed is discussed in Appendix B.

By the strong law of large numbers (Billingsley, 1995), the expectation of xi is also given as the
following

E
ÿ
xi
�
� lim

N41
1

N

XN
n�1

xin �15a�

and

E
ÿ
x0
�
� lim

N41
1

N

XN
n�1

x0n �15b�

where the superscript and the subscript on xin are used to denote that xin is the ith term of the Neumann
series obtained during the nth simulation realization. Based on Eqs. (15a) and (15b), a Monte Carlo
procedure can be adopted to estimate E�xi � and E�x0� (Rubinstein, 1981):

1. Generate a sample according to the initialization probability density, p� �x, �y0�: Random walker moves
from point �x to point �y0:

2. Evaluate and record x01 at point �y0 according to Eq. (12).
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3. Generate a sample according to the transition probability density, p� �y0, �y1�: Random walker moves
from point �y0 to point �y1

4. Evaluate and record x11 at point �y1 according to Eq. (12)
5. Generate a sample according to the transition probability density, p� �yiÿ1, �yi �: Random walker moves

from point �yiÿ1 to point �yi:
6. Evaluate and record xi1 at point �yi according to Eq. (12), for iRM
7. Repeat steps 1 through 6 N times, then the solution to T� �x� is estimated by

T� �x� � 1

N

XM
i�0

XN
n�1

xin �16�

The above Monte Carlo procedure is illustrated schematically in Fig. 1. In the next section, we will
show how the WBM can be applied to solving linear elasticity problems.

3. Application of WBM to linear elasticity

Consider a linear elastic body with arbitrary tractions applied on the boundary. The displacement
®eld at any point inside the body O can be obtained using integral equations. We will consider antiplane
shear, plane strain and 3D problems.

For antiplane shear problems with traction boundary conditions, the resulting equations have the
following form (Hartman, 1989)

w� �x� �
�
G
2g� �x, �y�@w� �y�

@u �y
ds �y ÿ

�
G
2
@g� �x, �y�
@u �y

w� �y� ds �y, �x 2 G �17a�

w� �x� ÿ
�
G
g� �x, �y�@w� �y�

@u �y
ds �y � ÿ

�
G

@g� �x, �y�
@u �y

w� �y� ds �y, �x 2 O �17b�

where w� �x� is the out of plane displacement and it is de®ned as the displacement in the direction
perpendicular to the x±y plane at �x (see Fig. 2), g� �x, �y� is the out of plane displacement at �x due to a
point force at �y (Hartman, 1989), i.e.,

g� �x, �y� � ÿ 1

2p
ln�r�

r � j �yÿ �xj:
Also, the shear modulus has been set to 1 for the convenience of computation, @w=@u �y is equal to the
speci®ed traction on the boundary and u �y is the unit normal vector at point �y: Note that Eq. (17a) holds
for points on the boundary of the body and Eq. (17b) holds for points inside the body.

Suppose we are interested in ®nding the displacement value at points inside the body, then by
comparing Eq. (17a) to Eq. (1) and Eq. (17b) to Eq. (8), we ®nd in antiplane shear problems that

m � w �18a�

Ks � ÿ2 @g
@u �y

�18b�
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f �
�
G
2g
@w

@u �y
ds �y �18c�

Rs �
�
1

2

�
Ks �18d�

and

T � wÿ
�
G
g
@w

@u �y
ds �y �18e�

where the subscript s in Ks and Rs is used to emphasize that they are the kernels corresponding to the
antiplane shear case. Since @w=@u �y is the given traction,

�
G g @w=@u �y ds �y can be evaluated explicitly.

Hence, after T is estimated based on the Monte Carlo procedure described in the previous section, we
can solve for w using Eq. (18e).

The next task is to ®nd a random walk on the boundary to simulate, i.e., determine what initialization
probability density, p� �x, �y0�, and transition probability density, p� �yiÿ1, �yi �, to use. It will be shown in
Appendix C that we can set p� �yiÿ1, �yi � � jKs� �yiÿ1, �yi �j and p� �x, �y0� � jRs� �x, �y0�j for convex domains.
Modi®cations to p� �x, �y0� and p� �yiÿ1, �yi � based on jRs� �x, �y0�j and jKs� �yiÿ1, �yi �j for nonconvex domains
are given in Appendix C (see Eqs. (C6a) and (C6b)). A method of generating random walk samples
according to jRs� �x, �y0�j and jKs� �yiÿ1, �yi �j for convex and nonconvex domains is also given in Appendix
C. Of course, we can choose other p� �yiÿ1, �yi �s and p� �x, �y0�s, but these other choices may lead to large
variances in xi, therefore, requiring a large number of samples to achieve the desired error tolerance as
shown in Section 5 of the paper. It turns out that in the antiplane shear problems p� �yiÿ1, �yi � � jKs� �yiÿ1,
�yi �j and p� �x, �y0� � jRs� �x, �y0�j are the optimal choice (Mikhailov, 1992). The subject of ®nding the

Fig. 2. Antiplane shear example problem: A linear elastic body with a square cross section of length 20 containing a centrally

located circular hole of radius 0.5, is being loaded by uniform shear tractions on the top and bottom faces. Also shown is the coor-

dinate system used in the problem with its origin located at the center of the hole.
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optimal p� �yiÿ1, �yi � and p� �x, �y0� is called `importance sampling' in Monte Carlo simulation literatures
(e.g. Mikhailov, 1992; Ross, 1997). We will not discuss importance sampling here.

Using the choice of p� �yiÿ1, �yi � � jKs� �yiÿ1, �yi �j and p� �x, �y0� � jRs� �x, �y0�j for our random walk on the
boundary, the random variable de®ned in Eqs. (12), (13a) and (13b) for convex domains becomes

xi � � ÿ 1�if� �yi �, ir0 �19�

Using the Monte Carlo procedure described in Section 2.2, the solution to the antiplane shear problems,
T� �x�, is estimated by

T� �x� � 1

N

XM
i�0

XN
n�1
� ÿ 1�ifn� �yi � �20a�

where M denotes the number of terms kept in the Neumann series and N denotes the total number of
samples generated. The Monte Carlo procedure remains unchanged for nonconvex domains, except that
Eq. (20a) is now given as follows

T� �x� � 1

N

XM
i�0

XN
n�1
� ÿ 1�ifn� �yi �q� �yi � �20b�

where q� �yi � is the number of intersection with G of the ray � �yi ÿ �yiÿ1� excluding the point �yiÿ1
We can also formulate plane and 3D problems with known boundary tractions in terms of integral

equations. The formulation is very similar to that of antiplane shear problems. The integral equations
are (Hartman, 1989)

ui� �x� � 2

�
G

�
Uij� �x, �y�tj� �y� ÿ Tij� �x, �y�uj� �y�

�
ds �y, �x 2 G �21a�

ui� �x� ÿ
�
G
Uij� �x, �y�tj� �y� ds �y � ÿ

�
G
Tij� �x, �y�uj� �y� ds �y, �x 2 O �21b�

where ui denotes the ith component of the displacement vector in the jth direction, Uij� �x, �y� denotes the
kernel that gives the displacement in the ith direction at point �x due to a unit point force in the jth
direction at point �y, tj denote the jth component of the traction vector, and Tij� �x, �y� denotes the kernel
that gives the traction in the ith direction at point �x due to a unit point force in the jth direction at
point �y: The summation convention is used in Eqs. (21a) and (21b), i.e., for plane problems i and j run
from 1 to 2 and for 3D problems i and j run from 1 to 3. Note that the unknown ui is a vector instead
of a scalar as in the antiplane shear case. Also note that the kernels Uij and Rij are both n� n matrices
instead of scalars as in the antiplane shear case. However, these di�erences do not make the WBM
anymore complicated than in the antiplane shear case. Explicit expressions for the kernels Uij� �x, �y� and
Tij� �x, �y� are given below for completeness (Hartman, 1989).

Uij� �x, �y� � 1

16pG�1ÿ n�r
��3ÿ 4n�dij � r,ir,j

�
3D �22a�

Uij� �x, �y� � 1

8pG�1ÿ n�
�
�3ÿ 4n� ln

�
1

r

�
dij � r,ir,j

�
2D �22b�
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Tij� �x, �y� � ÿ1
4ap�1ÿ n�ra

�
@r

@n
ÿ�1ÿ 2n�dij � br,ir,j

�ÿ �1ÿ 2n��r,inj� �y� ÿ r,jni� �y�
	� �23�

where a � 1, b � 2 in 2D, a � 2, b =3 in 3D, dij is the Kronecker delta, G is the shear modulus, n is the
Poisson's ratio, r � j �xÿ �yj is the distance between point �x and �y, r,i � �yi ÿ xi �=r, and ni� �y� is the ith
component of the unit normal vector at point �y:

As in the antiplane shear problems, we can make similar correspondences of Eq. (21a) to Eq. (1) and
(21b) to Eq. (8). We ®nd that:

m � ui

K � ÿ2Tij

f � 2

�
G
Uij� �x, �y�tj� �y� ds �y

R � ÿTij

T � ui ÿ
�
G
Uij� �x, �y�tj� �y� ds �y

Note that the integral
�
G Uij� �x, �y�tj� �y� ds �y can be evaluated explicitly since the boundary traction is

known and hence, we can solve for the unknown displacement.
Our next task, as in the antiplane shear case, is to identify an appropriate random walk to simulate. It

was relatively simple to identify the appropriate random walk in the antiplane shear case, since the
kernels, jKs� �yi, �yiÿ1�j and jRs� �x, �y0�j, lent themselves to probabilistic interpretations easily, as shown in
Appendix C. Here, the kernels Uij� �x, �y� and Tij� �x, �y� cannot be interpreted easily in a probabilistic sense.
Therefore, we will again set p� �yiÿ1, �yi � � jKs� �yiÿ1, �yi �j for the transition probability density, and p� �x, �y0�
�jRs� �x, �y0�j for the initialization probability density for convex domains and for nonconvex domains we
will use the modi®cations given in Appendix C (Eq. (C6a,b)). Note that the choice made for the
transition and initialization probability densities is not the optimal choice based on importance sampling
(Mikhailov, 1992). However, the current choice does have some nice features: (1) it is very easy to
simulate numerically and (2) its functional behavior is quite similar to that of the kernels which will
limit the variance, hence, the error.

Specializing to plane and 3D problems, the random variable, or random vector in this case, de®ned
by Eqs. (12)±(13a) now becomes

xin � Qi
nkfk� �yi �, ir0 �24�

where

Qi
nk �

Qiÿ1
nm

�ÿ 2Tmk� �yiÿ1, �yi �
�

jKs� �yiÿ1, �yi �j
, ir1 �25a�

and

Q0
nm �

ÿTnm

ÿ
�x, �y0

�
jRs

ÿ
�x, �y0

�j , i � 0 �25b�
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Note that subscripts in Eq. (24) through Eq. (25b) denote components of a vector or a matrix, not
simulation runs as in Eqs. (20a) and (20b). The same Monte Carlo procedure given in Section 2.2
applies for plane strain and 3D problems. The components of the unknown vector Tn is estimated as
given below

Tn� �x� � 1

N

XM
i�0

XN
m�1

ÿ
xin
�
m �26�

For nonconvex domains, the Monte Carlo procedure remains the same, except that Eqs. (25a) and (25b)
become

Qi
nk �

q� �yi �Qiÿ1
nm

�ÿ 2Tmk� �yiÿ1, �yi �
�

jKs� �yiÿ1, �yi �j
, ir1

and

Q0
nm �

ÿqÿ �y0
�
Tnm

ÿ
�x, �y0

�
jRs

ÿ
�x, �y0

�j , i � 0

Next, we apply the WBM to solve three example problems in linear elasticity.

4. Numerical examples

The WBM is applied to the following three numerical examples: (1) a square region containing a
centrally located circular hole with uniform antiplane shear traction applied on the top and bottom
faces as shown in Fig. 2, (2) a plane strain problem of a square region containing a centrally located
circular hole with uniform tension being applied on the top and bottom faces as shown in Fig. 3, and
(3) a 3D problem of a cubic region containing a centrally located spherical cavity with uniform tension
being applied on the top and bottom faces as shown in Fig. 4

4.1. Antiplane shear problem

The problem solved is a square region containing a circular hole with uniform antiplane shear
traction applied on the top and bottom faces. This is illustrated in Fig. 2 along with the coordinate
system and the dimensions of the body used in computation. Note that the value of traction and shear
modulus is set to unit magnitude for the convenience of computation. The numerical results are
tabulated in Table 1 along with the displacement values obtained from the analytical solution of a
circular hole within an in®nite domain. The comparison made here between the numerical solution and
the exact solution is valid as long as the points are not too far away from the circular hole, since the
square region is approximately 20 times larger than the circular hole. All numerical solutions are
obtained with 20,000 samples and using one term in the Neumann series, in short, 20,000(1). The errors
are computed according to Eq. (30). Note that the numerical solution compares favorably with the
analytical solution, except when we move farther away from the circular hole as shown by the last point
in Table 1, which is to be expected.
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Fig. 3. Plane strain example problem: A linear elastic body of square cross section of length 20 containing a centrally located circu-

lar hole of radius 1.0, is being loaded by uniform tension on the top and bottom faces. Also shown is the coordinate system used

in the problem with its origin located at the center of the hole.

Fig. 4. 3D elasticity example problem: A cubic linear elastic body of side length 20 containing a centrally located spherical cavity

of radius 1.0, is being loaded by uniform tension on the top and bottom faces. Also shown is the coordinate system used in the

problem with its origin located at the center of the cavity.
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4.2. Plane strain problem

The example problem solved is a square region containing a circular hole being loaded by uniform
far-®eld tension of unit magnitude. This is illustrated in Fig. 3 along with the coordinate system and the
dimensions of the body. Numerical and analytical results are tabulated in Table 2 for comparison. As in
the previous section, the in®nite domain analytical results are used. The numerical results are obtained
with 400,000(1). Again, the numerical solution compares favorably with the analytical solution.

4.3. 3D problem

The example problem is a cubic region containing a spherical cavity being loaded by uniform tension
of unit magnitude. It is illustrated in Fig. 4 along with the coordinate system and the dimensions of the
body. The numerical solution from the WBM is compared to the solution obtained via the ®nite element
method. This is shown in Table 3 below. The WBM results compare well with the results via the ®nite
element method. The WBM results are obtained with 400,000(1).

Note that in all the three example problems only one term is used in the Neumann series. A statistical
procedure based on hypothesis testing is developed to determine the number of terms needed in the
Neumann series. It has been applied to all the three problems. Details of the procedure can be found in
Appendix B. Based on the statistical procedure, we have found that, in all three problems, additional
terms do not contribute much to the summation and their inclusions will result in greater sampling
errors in the ®nal solution.

It was also noted that the number of samples depends on a preset tolerance level of sampling errors
and the variance associated with the random variable; a large variance implies a large number of
samples is required to achieve the preset error tolerance. For each of the three example problems
approximately the same level of sampling error tolerance has been used, but the variance in the
antiplane shear problem is smaller than in the plane strain and 3D problems. This is to be expected

Table 1

Comparison between numerical and analytical solution for antiplane shear problem

x y wnumerical wanalytical

0.55 0.55 0.7820.07 0.78

0.6 0.6 0.8220.07 0.81

0.65 0.433 0.6120.063 0.61

1.2 0.5 0.5820.04 0.57

2 3 3.0020.04 3.06

Table 2

Comparison between numerical and analytical solution for plane strain problem

gx y u1 (numerical) u2 (numerical) u1 (analytical) u2 (analytical)

0 1.5 0 1.0920.096 0 1.08

0 1.6 0 1.1120.093 0 1.09

0 1.7 0 1.1320.091 0 1.10

0 2.0 0 1.2020.082 0 1.15

0 2.5 0 1.2720.061 0 1.24
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since the optimal sampling scheme is used for the antiplane shear case. Hence, only 20,000 samples were
needed in the antiplane shear problem as compared to 400,000 samples in the plane strain and 3D
problems. In the next section, an explicit formula is given for computing the sampling error.

5. Error analysis

There are two sources of error associated with the WBM. The ®rst source of error is due to
truncating the in®nite series (Eq. (5)). The second source, called sampling error, arises due to variance
associated with the random variable, xi: In general, the ®rst source of error cannot be determined
explicitly. We must perform convergence tests empirically to determine the appropriate number of terms
to keep. Once the appropriate number of terms has been determined via the procedure described in
Appendix B, the sampling error becomes the major source of error in WBM. In this section we will
present the expression necessary for estimating the second source of error.

We know from the central limit theorem that for large values of N

����
N
p � �Xÿ y����������������

Var
ÿ
xi
�q 0Normal�0, 1� �27�

where 0Normal�0, 1� means `is approximately distributed as a unit normal', �X is given by 1
N

PN
n�1 x

i
n,

and y is given by
� �

G R� �x, �y�K i� �y, �t� f � �t� ds�t ds �y for ir1, and is given by
�
G R� �x, �y� f � �y� ds �y for i � 0:

De®ne Z to be a unit normal random variable. Let za be such that the probability of Z > za is

PfZ > zag � a

where a is any number between zero and one. It follows from the symmetry of the unit normal density
function about the origin that

P

8<: �Xÿ za=2

���������������
Var

ÿ
xi
�q

����
N
p < y < �X� za=2

���������������
Var

ÿ
xi
�q

����
N
p

9=; � 1ÿ a �28�

In other words, the probability that the exact solution, y, will lie within the interval
�X2za=2

���������������
Var�xi �

p
=
����
N
p

is 1ÿ a: Values of za can be obtained from tables of Spiegel (1995) for di�erent
values of a or con®dence. In general, we do not know Var�xi �: However, Var�xi � can be estimated using
(Spiegel, 1995)

S 2 � 1

Nÿ 1

XN
n�1

ÿ
xin ÿ �X

� 2 �29�

Table 3

Comparison between WBM and FEM solution for 3D problem

x y z u1 & u2 (WBM) u3 (WBM) u1 & u2 (FEM) u3 (FEM)

0 0 1.521 0 0.8020.01 0 0.83

0 0 1.677 0 0.8320.01 0 0.85

0 0 1.873 0 0.9020.01 0 0.89

0 0 2.117 0 0.9920.01 0 0.95
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By Slutsky's theorem (Billingsley, 1995), if we replace
���������������
Var�xi �

p
in Eq. (28) by S we still have a random

variable that is distributed approximately as unit normal for large N. Therefore, the interval can be
estimated as before and is

�X2
za=2S����

N
p �30�

for any given level of con®dence, a: Eq. (30) is the desired result for estimating the sampling error. All
errors in the example problems are estimated with za=2 � 1:

6. Conclusions

A Monte Carlo method, called walk on the boundary method (WBM), for solving linear elasticity
problems is carried out. The governing integral equations are based on the BEM formulation. The
resulting integral equations are solved via the WBM. This method does not require any kind of
meshing. Thus, the method can be very well suited for linear elasticity problems involving a large
number of microstructures in 3D, where meshing can be particularly taxing on computing resources.
Also, when one is interested in obtaining solutions at a few points in an elastic body, the WBM is a
very e�cient method since with the WBM, solutions can be obtained only at points of interest.
Furthermore, error estimates for WBM is very easy to obtain and is given by Eq. (30).

The WBM is developed in detail for antiplane shear problems, plane strain problems and 3D
problems with traction boundary conditions. The developed schemes are then applied to three sample
problems Ð (1) square body containing a circular hole undergoing antiplane shear (2) square body with
a circular hole under uniform traction, and (3) a cube containing a spherical cavity being loaded by
uniform tension. The numerical results in the ®rst two problems agree well with the analytical solutions.
For the third problem, a comparison between the WBM and the FEM is made, and a favorable
comparison is obtained. Overall, the numerical results are in reasonable agreement with the exact and
FEM solutions, hence demonstrating the feasibility of the WBM, at least for problems with traction
boundary conditions.

The proposed WBM is not intended as a replacement for FEM nor BEM. At its current stage of
development for linear elasticity problems, it is de®nitely not as versatile as FEM and BEM. In order to
make WBM more useful, there are some issues associated with WBM that need to be addressed. These
issues are: (1) stress calculations, (2) displacement and mixed boundary conditions, and (3) e�ciency of
the random walk simulation, i.e., we need to ®nd a better initialization and transition probability
density to use in the case of plane and 3D problems. However, as a feasibility study, it is demonstrated
that WBM is a viable method for solving linear elasticity problems, and by resolving the aforesaid issues
it is possible that WBM can become more versatile and useful in the future.
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Appendix A

We will prove here the claim that

E
ÿ
xi
�
�
� �

G
R� �x, �y�K i

ÿ
�y, �t
�
f��t� ds �t ds �y

and

E
ÿ
x0
�
�
�
G
R� �x, �y�f� �y� ds �y

Let us begin by considering a speci®c case, i.e., i � 2: For i � 2, x2 according to Eqs. (13a), (13b), (14a)
and (14b) is given below

x2 � R
ÿ

�x, �y0
�

p
ÿ

�x, �y0
� Kÿ �y0, �y1

�
p
ÿ

�y0, �y1
� K� �y1, �y2 �
p� �y1, �y2�

f� �y2� �A1�

To compute the expectation of the above random variable, we must integrate over all possible paths of
the random walk weighted by the probability density given below

p
ÿ

�x, �y0
�
p
ÿ

�y0, �y1
�
p� �y1, �y2� �A2�

Therefore, the expectation, E�x2�, is computed as� �
G

�
R
ÿ

�x, �y0
�

p
ÿ

�x, �y0
� Kÿ �y0, �y1

�
p
ÿ

�y0, �y1
� K� �y1, �y2�
p� �y1, �y2�

f� �y2�p
ÿ

�x, �y0
�
p
ÿ

�y0, �y1
�
p� �y1, �y2� ds �y0 ds �y1 ds �y2 �A3�

Eq. (A3) can be simpli®ed to become� �
G

�
R
ÿ

�x, �y0
�
K
ÿ

�y0, �y1
�
K� �y1, �y2�f� �y2� ds �y0 ds �y1 ds �y2 �A4�

Note that

K 2
ÿ

�y0, �y2
� � �

G
K
ÿ

�y0, �y1
�
K� �y1, �y2 � ds �y1 �A5�

according to Eq. (3). Hence, Eq. (A4) can be rewritten as

E
ÿ
x2
�
�
� �

G
R
ÿ

�x, �y0
�
K 2

ÿ
�y0, �y2

�
f� �y2 � ds �y0 ds �y2 �A6�

which is exactly the third term in Eq. (5). Following the same procedure as shown above, we can easily
prove the claim made in the beginning of the Appendix for other values of i.

Appendix B

In this Appendix, we will develop a statistical test for determining whether the ith term in the
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Neumann series (Eq. (10) or Eq. (11)) is signi®cantly greater than zero. We will then be able to decide
whether we should keep the ith term, or truncate the series at the ith term.

We start by noting that according the central limit theorem (Billingsley, 1995),

���
n
p h

E
ÿ
xi
�
ÿ mi

i
si

0N�0, 1�, ir0 �B1�

where n is the number of samples, E�xi � can be estimated from Eqs. (15a) and (15b), mi (unknown) is the
actual value of the ith term of the Neumann series and si is the standard deviation of the random
variable E�xi �: The symbol, 0N�0, 1�, means that the random variable,

���
n
p �E�xi � ÿ mi �=si, is distributed

as a normal random variable with zero mean and unit variance. A random variable with such a
distribution is also called the standard normal variable and its distribution is called the standard normal
distribution. The standard deviation, si, can be estimated by the following formula (Spiegel, 1995)

s2
i �

1

n

Xn
m�1

ÿ
xim
�2ÿÿEÿxi�� 2 �B2�

We can develop a statistical test based on Eq. (B1). Let us begin with the hypothesis that mi � 0:
According to Eq. (B1), the hypothesis implies that���

n
p �

E
ÿ
xi
��

si
0N�0, 1� �B3�

Since E�xi � provides an estimate for mi, we would expect Eq. (B3) to be signi®cantly greater than zero if
mi itself is also signi®cantly greater than zero. We can provide a quantitative measure of this signi®cance
by utilizing the fact that

���
n
p �E�xi ��=si's distribution is known. To quantify this signi®cance, we start by

computing the following probability

P

 
j
���
n
p �

E
ÿ
xi
��

si
j > za=2

!
� a �B4�

where za=2 is de®ned to be the point at which the area under the density of the standard normal variable
to its right is equal to a=2:

Now, suppose a � 0:01, z0:005 � 2:57, then Eq. (B4) is saying that j ���np �E�xi ��=sij is greater than 2.57,
which occurs by pure chance only one percent of the time under the hypothesis that mi is equal to zero.
Therefore, if j ���np �E�xi ��=sij is greater than 2.57 then it is unlikely that this has occurred by pure chance,
hence, we have to reject the hypothesis that mi is equal to zero. In statistical terms, we call 1ÿ a the
signi®cance level of the test. For the above scenario, we would say that we have rejected the hypothesis

Table B1

Test statistic results for 3D sample problem

x y z j
��
n
p

E�x11 �
s1
1

j j
��
n
p

E�x12 �
s1
2

j j
��
n
p

E�x13 �
s1
3

j j
��
n
p

E�x 2
3 �

s 2
3

j

0.0 0.0 1.521 1.28 0.113 16.5 1.72

0.0 0.0 1.677 1.27 0.251 14.9 2.10

0.0 0.0 1.873 1.67 0.780 16.5 0.52

0.0 0.0 2.117 1.09 0.830 19.8 0.53
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that mi is equal to zero at a 99 percent signi®cance level. Based on the above statistical test, we can use
the following procedure to determine whether we should keep the ith term in the Neumann series or
not:

1. Compute j ���np �E�xi ��=sij:
2. If j ���np �E�xi ��=sij is greater than 2.57, keep the ith term.
3. Repeat test for latter terms until j ���np �E�xm��=smj�m > i � is less than 2.57, then truncate series at mth

term.

The above procedure can be easily implemented within a program based on the WBM. Results for the
3D example problem are tabulated below in Table B1. The results shown in Table B1 are obtained with
400,000 samples. Note that the subscript associated with xij and sij refers to the jth component of the ith
term solution vector in the Neumann series and its standard deviation, respectively. According to Table
B1, we see that E�x11�, E�x12� and E�x2

3 � are not signi®cantly greater than 0. Only E�x13� is signi®cantly
greater than zero. Therefore, in this case, only one term is needed in the Neumann series.

Appendix C

In this Appendix, we will discuss the probabilistic interpretations of jRs� �x, �y0�j and jKs� �yiÿ1, �yi �j,
hence, showing the reason why we can set p� �yiÿ1, �yi � � jKs� �yiÿ1, �yi �j and p� �x, �y0� � jRs� �x, �y0�j for
antiplane shear problems. We will ®rst focus on convex regions (e.g. circular bodies), then we will
consider nonconvex regions (e.g. multiply connected bodies). Also, we will discuss how to generate
random walk samples according to p� �x, �y0��jRs� �x, �y0�j and p� �yiÿ1, �yi � � jKs� �yiÿ1, �yi �j

To begin, let us examine jKs� �yiÿ1, �yi �j in more detail. For the antiplane shear problems, jKs� �yiÿ1, �yi �j
can be written as below

jKs� �yiÿ1, �yi �j �
1

p

( ÿ
y1i ÿ y1iÿ1

�
u1ÿ

y1i ÿ y1iÿ1
�2�ÿy2

i ÿ y2
iÿ1
�2 �

ÿ
y2
i ÿ y2

iÿ1
�
u2ÿ

y1i ÿ y1iÿ1
�2�ÿy2

i ÿ y2
iÿ1
� 2
)

�C1�

where �y1i , y2
i � and �y1iÿ1, y2

iÿ1� are the x and y components of the point �yi and �yiÿ1, respectively, and u1
and u2 are the x and y components of the unit normal associated with the point �yi: Eq. (C1) can be
written as

jKs� �yiÿ1, �yi �j �
1

p

� � �yi ÿ �yiÿ1 � � �u
j �yi ÿ �yiÿ1j2

�
�C2�

where � denotes dot product. By invoking the de®nition of dot product, Eq. (C2) becomes

jKs� �yiÿ1, �yi �j �
1

p
cos�y�
j �yi ÿ �yiÿ1j

�C3�

where y denotes the angle between the vector � �yi ÿ �yiÿ1� and the unit normal, �u, at point �yi: In this form,
Eq. (C3) can easily be given a probabilistic interpretation.

Let us now consider the probability of the event that the random walk, after leaving from �yiÿ1, ends
up in the neighborhood of �yi: The probability of this event occurring is given by p� �yi, �yiÿ1�ds where ds
denotes an arc element of the boundary. Suppose that the direction at �yiÿ1 is chosen from a uniform
distribution of angles between �0, p� and �yi is the point where the straight trajectory strikes the
boundary, then we can obtain an explicit expression for the probability of the event as
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p� �yiÿ1, �yi �ds �
1

p
cos�yi�ds
j �yi ÿ �yiÿ1j

�C4�

Note that do � cos�y�ds=j �yiÿ �yiÿ1j is just the angle subtended by the arc element ds when viewed from
�yiÿ1: By comparing Eq. (C4) to Eq. (C3), we see that we can identify jKs� �yiÿ1, �yi �j with p� �yi, �yiÿ1�:
Similarly, the probability of the event of going from �x to the neighborhood of �y0 is given by setting p� �x,
�y0��jRs� �x, �y0�j and multiplying by the arc element ds, i.e.,

jRs

ÿ
�x, �y0

�jds � cos�y0 �ds
2pj �xÿ �y0j

�C5�

if the direction at �x is isotropically selected from a uniform distribution of angles between �0, 2p�, and
�y0 is the point where the straight trajectory strikes the boundary, G: Similar probabilistic interpretations
hold for jKs� �yiÿ1, �yi �j and jRs� �x, �y0�j in 3D in terms of solid angles and surface elements (Nakamura,
1977).

For nonconvex regions, the previous probabilistic interpretation needs to be modi®ed. For example,
as shown in Fig. C1, an isotropically chosen straight trajectory emanating from �x intercepts three
boundary points instead of just one boundary point as in the convex case. In this case, jRs� �x, �y0�jds
should be interpreted as the probability of striking any of the three points along the direction of the
straight trajectory; similar modi®cation applies to jKs� �yiÿ1, �yi �jds: Note that �y0 and �yi could be any of
the three boundary points shown in Fig. C1. More generally, jRs� �x, �y0�jds should be interpreted as the
probability of striking any of the q� �y0� points along the direction of the straight trajectory, where q� �y0�
is the total number of boundary points intercepted. Similar interpretation applies to jKs� �yiÿ1, �yi �jds:
Therefore, for nonconvex domains, assuming that each of the q��� points is equally like to be struck, we
have (Sabelfeld, 1991)

Fig. C1. The schematic illustration of the selection of initial and subsequent boundary points for nonconvex bodies. The initial ray,

as illustrated, encountered three boundary points, �y0, 1 �y0, 2 and �y0, 3: Point �y0, 2 is selected according to the procedure given in

Appendix C. A subsequent ray emanating from �y0, 2also encountered three boundary points, �y1, 1, �y1, 2 and �y1, 3: One of these three

points can be selected according to the same procedure as given in Appendix C.
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p
ÿ

�x, �y0
� � jRs

ÿ
�x, �y0

�j
q
ÿ

�y0
� �C6a�

p� �yiÿ1, �yi � �
jKs� �yiÿ1, �yi �j

q� �yi �
�C6b�

For two dimensional convex regions, we can generate samples according to the following procedure:

1. For initial events, an isotropic direction is generated by the inverse transform method (Fishman,
1996; Rubinstein, 1981)

y � 2pu �C7�

where y denotes the direction of the straight trajectory and u is a random number uniformly
distributed between (0, 1). The boundary point encountered is then selected.

2. For subsequent events, an isotropic direction is generated by the inverse transform method

y � pu �C8�

The boundary point encountered is then selected.

For three dimensional convex regions, we can generate samples according to the following procedure:

1. For initial events, an isotropic direction is generated by the inverse transform method

y � 2pu �C9a�

f � arccos �1ÿ u� �C9b�

where y is the angle between the projected ray in the x±y plane and the x-axis and f is the angle
between the ray and the z-axis. The boundary point encountered is then selected.

2. For subsequent events, an isotropic direction is generated by the inverse transform method

y � 2pu �C10a�

f � arccos �1ÿ u=2� �C10b�

The boundary point encountered is then selected.

To generate samples for both two dimensional and three dimensional nonconvex regions, we need only
to replace how the boundary points are selected in the convex case by the following procedure:

1. q boundary points are intercepted by the ray generated via the above procedures. These points are
indexed as 1, 2,..., q. See Fig. C1 for the case of q � 3:

2. Generate a random number, e, uniformly distributed between (0, 1).
3. Assume the q points are all equally likely to be selected (Sabelfeld, 1991), i.e., if e falls between
�mÿ 1�=q and m=q then the mth point is selected, where m is an integer such that 1RmRq:
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